Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gross slip fretting wear of CrCn, TiAlN, Ni, and CuNiIn coatings on Ti6A4V interfaces

Identifieur interne : 007925 ( Main/Repository ); précédent : 007924; suivant : 007926

Gross slip fretting wear of CrCn, TiAlN, Ni, and CuNiIn coatings on Ti6A4V interfaces

Auteurs : RBID : Pascal:07-0450488

Descripteurs français

English descriptors

Abstract

Fretting is a low amplitude oscillatory wear that occurs at component interfaces and can accelerate crack initiation as well as interfacial degradation. Prevalent in Ti-alloy contacts, fretting wear often occurs at the blade/disk interfaces of fan and compressor stages in turbine engines, causing premature component failure. In many cases, plasma sprayed CuNiIn (copper-nickel-indium) coatings and solid lubricants are applied to blade roots to mitigate the fretting problem. However, the CuNiIn coatings can cause severe damage to the uncoated Ti-alloy counter parts once the solid lubricants wear out. In this study, bench level gross slip fretting wear tests were conducted at room temperature on unlubricated Ti6A14V (titanium, 6% aluminum, 4% vanadium) surfaces mated with CuNiIn and commercially pure Ni plasma sprayed surfaces. Upon analysis, it was determined that the uncoated Ti6A14V surfaces initially gall. Then the resulting adherent wear particles break up causing a transition into a third body type wear mode over time. This leads to an accumulation of wear that is similar to that of uncoated Ti6A14V mating surfaces. Additional tests were conducted after applying 2-μm thick PVD deposited TiAlN (titanium-aluminium-nitride) and CrCN (chrome-carbon-nitride) coatings to the surfaces of a second set of Ti6A14V mating pairs. When worn against the unlubricated CuNiIn and Ni coatings, the thin TiAlN and CrCN coatings wore gradually without delaminating or cracking and were able to mitigate galling and extend test life. The application of the hard coatings lead to a reduction in wear in all of the tests except with the combination of TiAlN worn against CuNiIn.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:07-0450488

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Gross slip fretting wear of CrCn, TiAlN, Ni, and CuNiIn coatings on Ti6A4V interfaces</title>
<author>
<name sortKey="Hager, C H Jr" uniqKey="Hager C">C. H. Jr Hager</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Universal Technology Corporation, 1270 North Fairfield Road</s1>
<s2>Dayton, OH 45432-2600</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Dayton, OH 45432-2600</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sanders, J" uniqKey="Sanders J">J. Sanders</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>2941 Hobson Way AFRL/MLBT, Wright Patterson Air Force Base</s1>
<s2>OH 45433-7750</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sharma, S" uniqKey="Sharma S">S. Sharma</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>2941 Hobson Way AFRL/MLBT, Wright Patterson Air Force Base</s1>
<s2>OH 45433-7750</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Voevodin, A" uniqKey="Voevodin A">A. Voevodin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>2941 Hobson Way AFRL/MLBT, Wright Patterson Air Force Base</s1>
<s2>OH 45433-7750</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">07-0450488</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 07-0450488 INIST</idno>
<idno type="RBID">Pascal:07-0450488</idno>
<idno type="wicri:Area/Main/Corpus">007372</idno>
<idno type="wicri:Area/Main/Repository">007925</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0043-1648</idno>
<title level="j" type="abbreviated">Wear</title>
<title level="j" type="main">Wear</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium nitride</term>
<term>Compressor</term>
<term>Crack initiation</term>
<term>Damaging</term>
<term>Dry friction</term>
<term>Experimental study</term>
<term>Fretting wear</term>
<term>Gas turbine</term>
<term>Life test</term>
<term>Metal</term>
<term>Metal coating</term>
<term>Microdisplacement</term>
<term>Plasma spraying</term>
<term>Room temperature</term>
<term>Rupture</term>
<term>Solid lubricant</term>
<term>Sprayed coatings</term>
<term>Titanium nitride</term>
<term>Tribology</term>
<term>Turbine blade</term>
<term>Turbojet</term>
<term>Wear test</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Usure petit débattement</term>
<term>Microdéplacement</term>
<term>Tribologie</term>
<term>Amorçage fissure</term>
<term>Rupture</term>
<term>Lubrifiant solide</term>
<term>Endommagement</term>
<term>Température ambiante</term>
<term>Frottement sec</term>
<term>Aluminium nitrure</term>
<term>Titane nitrure</term>
<term>Revêtement métallique</term>
<term>Métal</term>
<term>Aube turbine</term>
<term>Turbine gaz</term>
<term>Turboréacteur</term>
<term>Compresseur</term>
<term>Projection plasma</term>
<term>Essai usure</term>
<term>Etude expérimentale</term>
<term>Essai endurance</term>
<term>Revêtement projection</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Métal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Fretting is a low amplitude oscillatory wear that occurs at component interfaces and can accelerate crack initiation as well as interfacial degradation. Prevalent in Ti-alloy contacts, fretting wear often occurs at the blade/disk interfaces of fan and compressor stages in turbine engines, causing premature component failure. In many cases, plasma sprayed CuNiIn (copper-nickel-indium) coatings and solid lubricants are applied to blade roots to mitigate the fretting problem. However, the CuNiIn coatings can cause severe damage to the uncoated Ti-alloy counter parts once the solid lubricants wear out. In this study, bench level gross slip fretting wear tests were conducted at room temperature on unlubricated Ti6A14V (titanium, 6% aluminum, 4% vanadium) surfaces mated with CuNiIn and commercially pure Ni plasma sprayed surfaces. Upon analysis, it was determined that the uncoated Ti6A14V surfaces initially gall. Then the resulting adherent wear particles break up causing a transition into a third body type wear mode over time. This leads to an accumulation of wear that is similar to that of uncoated Ti6A14V mating surfaces. Additional tests were conducted after applying 2-μm thick PVD deposited TiAlN (titanium-aluminium-nitride) and CrCN (chrome-carbon-nitride) coatings to the surfaces of a second set of Ti6A14V mating pairs. When worn against the unlubricated CuNiIn and Ni coatings, the thin TiAlN and CrCN coatings wore gradually without delaminating or cracking and were able to mitigate galling and extend test life. The application of the hard coatings lead to a reduction in wear in all of the tests except with the combination of TiAlN worn against CuNiIn.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0043-1648</s0>
</fA01>
<fA02 i1="01">
<s0>WEARAH</s0>
</fA02>
<fA03 i2="1">
<s0>Wear</s0>
</fA03>
<fA05>
<s2>263</s2>
</fA05>
<fA06>
<s2>1-6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Gross slip fretting wear of CrCn, TiAlN, Ni, and CuNiIn coatings on Ti6A4V interfaces</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>16th International Conference on Wear of Materials, Montreal, Canada, 15-17 April 2007</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>HAGER (C. H. JR)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SANDERS (J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SHARMA (S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>VOEVODIN (A.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>LUDEMA (Kenneth C.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SHAFFER (Steven J.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Universal Technology Corporation, 1270 North Fairfield Road</s1>
<s2>Dayton, OH 45432-2600</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>2941 Hobson Way AFRL/MLBT, Wright Patterson Air Force Base</s1>
<s2>OH 45433-7750</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>University of Michigan-Ann Arbor</s1>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Battelle Memorial Institute-Columbus, Ohio</s1>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>430-443</s1>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>8579</s2>
<s5>354000162425970510</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>15 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0450488</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Wear</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Fretting is a low amplitude oscillatory wear that occurs at component interfaces and can accelerate crack initiation as well as interfacial degradation. Prevalent in Ti-alloy contacts, fretting wear often occurs at the blade/disk interfaces of fan and compressor stages in turbine engines, causing premature component failure. In many cases, plasma sprayed CuNiIn (copper-nickel-indium) coatings and solid lubricants are applied to blade roots to mitigate the fretting problem. However, the CuNiIn coatings can cause severe damage to the uncoated Ti-alloy counter parts once the solid lubricants wear out. In this study, bench level gross slip fretting wear tests were conducted at room temperature on unlubricated Ti6A14V (titanium, 6% aluminum, 4% vanadium) surfaces mated with CuNiIn and commercially pure Ni plasma sprayed surfaces. Upon analysis, it was determined that the uncoated Ti6A14V surfaces initially gall. Then the resulting adherent wear particles break up causing a transition into a third body type wear mode over time. This leads to an accumulation of wear that is similar to that of uncoated Ti6A14V mating surfaces. Additional tests were conducted after applying 2-μm thick PVD deposited TiAlN (titanium-aluminium-nitride) and CrCN (chrome-carbon-nitride) coatings to the surfaces of a second set of Ti6A14V mating pairs. When worn against the unlubricated CuNiIn and Ni coatings, the thin TiAlN and CrCN coatings wore gradually without delaminating or cracking and were able to mitigate galling and extend test life. The application of the hard coatings lead to a reduction in wear in all of the tests except with the combination of TiAlN worn against CuNiIn.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D12D02</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001B40F30N</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Usure petit débattement</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Fretting wear</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Desgate pequinio desplazamiento</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Microdéplacement</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Microdisplacement</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Microdesplazamiento</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Tribologie</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Tribology</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Tribología</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Amorçage fissure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Crack initiation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Iniciación grieta</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Rupture</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Rupture</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Ruptura</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Lubrifiant solide</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Solid lubricant</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Lubrificante sólido</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Endommagement</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Damaging</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Deterioración</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Température ambiante</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Room temperature</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Temperatura ambiente</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Frottement sec</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Dry friction</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Frotamiento seco</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Aluminium nitrure</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Aluminium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Aluminio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Titane nitrure</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Titanium nitride</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Titanio nitruro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Revêtement métallique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Metal coating</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Revestimiento metálico</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Métal</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Metal</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Metal</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Aube turbine</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Turbine blade</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Paleta turbina</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Turbine gaz</s0>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Gas turbine</s0>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Turbina gas</s0>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Turboréacteur</s0>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Turbojet</s0>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Turboreactor</s0>
<s5>21</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Compresseur</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Compressor</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Compresor</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Projection plasma</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Plasma spraying</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Proyección plasma</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Essai usure</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Wear test</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Prueba al desgaste</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Essai endurance</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Life test</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Prueba duración</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Revêtement projection</s0>
<s5>41</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Sprayed coatings</s0>
<s5>41</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Capa depositada rociado</s0>
<s5>41</s5>
</fC03>
<fN21>
<s1>295</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>WOM 2007 : International Conference on Wear of Materials</s1>
<s2>16</s2>
<s3>Montreal, PQ CAN</s3>
<s4>2007-04-15</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 007925 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 007925 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:07-0450488
   |texte=   Gross slip fretting wear of CrCn, TiAlN, Ni, and CuNiIn coatings on Ti6A4V interfaces
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024